Documentation
IOLITE's documentation helps you get started quickly and serves as a comprehensive reference for the Lua scripting API, the editor, and all the available components.
Important Note
The documentation is a work in progress and will be updated as development progresses.
Table of Contents
- Engine Documentation
- Editor Documentation
- Components Documentation
- Lua API Documentation
- Samples Available on GitHub
Engine Documentation
This section describes some of the core concepts and the ideology of the engine on a very high level. It also features detailed guides to work with the various subsystems of the engine.
Last updated: 13.05.2023
Table of Contents
- Introduction and General Concepts
- Installing IOLITE
- Data Sources and the App Metadata File
- Post Processing
- Scripting
- Physics and Destruction
- Heightmap Terrain Generator
- Path Finding
- Sound System
- UI System
Introduction and General Concepts
Ideology
IOLITE's core ideology is to offer an easily understandable way to create fun and responsive voxel games.
TODO
Entity Component System
The ECS (Entity Component System) forms the engine's core.
An entity is a general-purpose object assigned a context using one or multiple components. The components primarily house the data to accomplish the specific task, and the system, which comes with every component type, provides the logic. A system works on all instantiated components of a particular type. So, for whatever you're trying to accomplish, you will most likely create an entity and decorate it with one or multiple of the available components to perform specific tasks.
By default, every entity created in the editor has a node component attached to it. Nodes assign a position, orientation, and size in the world to an entity and are also in charge of building hierarchies of multiple entities. One node can have multiple child nodes, and each child node can have multiple child nodes on its own.
As a more complex example, if you create an entity and decorate it with a node, character controller, script, and a hierarchy of voxel shape components, this could become the basis for your player character.
Internally the ECS is designed with data-oriented principles, making it possible to work with large scenes and thousands of objects without hiccups. All the data of entities and components are always ensured to be laid out consecutively in memory, utilizing the CPU caches efficiently when, e.g., iterating over specific properties of components. These design principles also ensure that almost any engine part is or can easily be optimized with multithreading in the future.
Worlds
Worlds are your creative containers. On its basis, a world stores its name and a single root entity. All entities attached to the root entity build the description for your scene. In addition to that, worlds can be saved to and loaded from disk. You can also use worlds to structure your project: Multiple worlds store the levels for your game, while another single world can house the scripts and logic for your menu screen.
Rendering
This section contains a short technical overview of the rendering approach utilized in IOLITE. While these details are optional to work with the engine, having at least some technical information in the back of your head, especially when optimizing your game, can be tremendously helpful.
Two different systems handle the rendering process in IOLITE.
The first system is responsible for displaying the voxels on the screen and for providing the necessary data for the deferred (direct) lighting pass. The other system handles shadow rendering and diffuse/specular global illumination. While the first system utilizes a mixture of ray tracing and rasterization, the second one solely relies on real-time ray tracing using compute shaders.
A world in IOLITE is potentially composed of thousands of so-called voxel shapes. Voxel shapes are one-to-one mappings to the voxel creations loaded from VOX files authored, e.g., in Magica Voxel. Voxel shapes can be positioned, scaled, and rotated however you like. After placing a voxel shape in the scene, the voxelization pass analyzes the voxel data. It then quickly generates a heavily compressed compound of axis-aligned bounding boxes as an overall bounding volume in the background. Voxel shapes are used for displaying everything voxel-related, so even chunks spawned in the destruction systems are subsets of the initial voxel shapes they were created from.
During the rendering stage, the renderer then collects all visible voxel shapes, so the ones neither occluded nor out of the bounds of the camera's view, and renders them to the G-buffer used for the deferred lighting stage. The vertex shader for each voxel shape expands the compressed data to a renderable set of vertices. Subsequently, the fragment shader executes a ray tracing pass, starting from all pixel positions on the bounding volume. If a ray hits a solid voxel, all necessary data is written to the G-buffer. If voxel shapes only occupy a small area on the screen, the rendering of the more complex box geometry is skipped, and the shape's world bounds are rendered instead.
All in all, especially with the occlusion culling pass and conservative depth tests in the background, this approach achieves a close to constant overhead per pixel - making it almost entirely independent of the scene's complexity. Extra care has to be taken to alleviate overdraw, though. Accordingly, it's crucial to ensure that the bounds of shapes are as tight as humanly possible - potentially requiring you to split a complex shape into a compound of multiple smaller shapes to keep the amount of "air" inside the volumes to a minimum.
The real-time ray tracing subsystem works quite differently. Instead of rasterization, it works with various acceleration structures and a low-resolution rendering approach to allow the tracing of millions of rays per frame from any point in the scene in real-time.
In the first step, the GI pass generates a bounding volume hierarchy (BVH) from all the voxel shapes in the world on the fly. This data structure is utilized in the different global illumination passes to accelerate the ray tracing. The BVH allows us to skip large portions of the scene when searching for the actual hits of one specific ray. When the first bounding volume intersecting the ray is found, a ray-tracing pass similar to the approach depicted in the previous system is used.
TODO: The different GI quality levels and their differences, light sources, diffuse sampling, specular sampling, denoising
Installing IOLITE
TODO: Downloading and installing IOLITE
Setting up Python
IOLITE uses Python for auxiliary scripts, such as generating the heightmaps for the terrain generator. To run these scripts, you'll need to have Python installed on your system. We recommend using Python 3.7 or later.
- Go to the Python downloads page.
- Click on the "Download Python" button for the latest version of Python.
- Run the installer.
- In the installer, select "Add Python to PATH" if it is not already selected.
- Complete the installation process by following the prompts.
The scripts can be found in utilities/python_scripts
. Make sure to run install_requirements.bat
before trying to execute the scripts. This will automatically install all the required Python packages using Python's package manager pip
.
More details on the available scripts can be found in the according sections of this documentation.
Data Sources and the App Metadata File
Every project reads all its data from one or many so-called data sources. Data sources in the development environment are plain directories in the application's root directory (right next to the application). When deploying a build, you can opt-in to package the data of each of the data sources to an IOLITE package (IPKG) file.
Data is loaded from and stored in the following directories in a data source directory:
/my_data_source/worlds/ /my_data_source/managers/post_effects/ /my_data_source/managers/particle_effects/ /my_data_source/media/images/ /my_data_source/media/heightmaps/ /my_data_source/media/scripts/ /my_data_source/media/sounds/ /my_data_source/media/voxels/
If you're not using certain features, it's perfectly fine to skip the creation of the corresponding directories.
Using Data Sources for Modding
Data sources provide an incredibly flexible approach to modding applications created with IOLITE.
Let's say you want to replace a specific voxel asset in a game, like a tree in a different color or a particular script where you've added some little tweaks or new features. All you have to do is to create a new data source directory and place the modified assets in the correct path in the directory structure, matching the path used in the base data source. After that, you must tell the engine to load your data source first, shadowing the assets in the base data source. The following section about the app metadata file depicts how data sources are handled and loaded.
But data sources are not only handsome for modding purposes. They also offer a great way to tweak and test things without modifying the game's base assets.
Working with the App Metadata File
The app metadata data file is a JSON file with the following content:
{ "application_name": "IOLITE", "organization_name": "Missing Deadlines", "version_string": "0.1.0", "data_sources": [ "example" ], "active_data_source": "example", "initial_world": "example", "initial_game_state": "Editing", }
The app metadata offers the option to adjust basic things like your application's name and organization. In addition, it is also in charge of defining the data sources that should be used to source files from and which single data source is currently active for editing purposes.
Here's an overview of all the different parameters:
application_name
The name of your application.organization_name
The name of your organization (if any).version_string
Version string following the Semantic Versioning scheme.data_sources
The data sources used for your project. Data sources are loaded in the provided order. The engine starts searching for files in the first data sources and, if the file is found, skips searching all the other data sources.active_data_source
The active data source the editor writes to.initial_world
The initial world to load after startup.initial_game_state
The initial game state to activate after startup. It can be eitherEditing
for the editor orMain
to start the application in game mode directly.
Post Processing
TODO
Scripting
---Called once when the script component becomes active. [email protected] entity Ref The ref of the entity the script component is attached to. function OnActivate(entity) end --- Called every frame. [email protected] entity Ref The ref of the entity the script component is attached to. [email protected] delta_t number The time (in seconds) passed since the last call to this function. function Tick(entity, delta_t) end --- Called once when the script component becomes inactive. [email protected] entity Ref The ref of the entity the script component is attached to. function OnDeactivate(entity) end
Physics and Destruction
TODO
Heightmap Terrain Generator
-- Generate table for heightmap with encoded pixels local heightmap_table = {Terrain.create_pixel(height, grass_height, palette_idx), ...} -- Generate heightmap from provided data/table local node = Terrain.generate_from_data(heightmap_table, size, palette_voxel_shape_name, max_height, scale) -- or directly generate the terrain from an image file (e.g., a PNG file) local node = Terrain.generate_from_image(image_file_name, palette_voxel_shape_name, max_height, scale)
TODO: What are template chunks?
Path Finding
TODO
Sound System
TODO
UI System
TODO
Preparing Textures for the UI System
UI textures are also plain DDS files sourced from the media/images
directory. The are some requirements, though:
- UI textures need to be stored with pre-multiplied alpha
- UI textures must not contain any additional MIP levels (besides the first one, of course)
Here's an example of how to correctly convert a UI texture using DirectXTex:
texconv.exe -y -m 1 -pmalpha -f BC7_UNORM_SRGB my_ui_texture.png
Editor Documentation
This section focuses on the editor, featuring in-depth descriptions of the essential features, making it easy for you to get started quickly.
Last updated: 03.04.2023
Table of Contents
- Controlling the Camera
- Transforming Entities
- Creating and Loading Worlds
- Creating new Entities
- Importing VOX files
- Importing whole Scenes from VOX Files
Controlling the Camera
TODO
Transforming Entities
TODO
Creating and Loading Worlds
TODO
Creating new Entities
To create a new entity in the editor, right-click on the entity in the world inspector you want to attach the new entity to. In the context menu, either select Attach New Entity
or Attach New Entity (With Component)
to create an entity decorated with the selected component from the start.
Importing VOX files
TODO
Importing whole Scenes from VOX Files
To import a scene from a VOX file, open up the File
menu in the editor and select Import Scene from VOX
. Finally, select the VOX file to import the scene from. You can find the imported scene hierarchy below a new entity called vox_scene
. Please note that only scenes from VOX files can be loaded which are already present in the media/voxels
directory.
Known Issues
- Scaling is not supported when importing scenes from VOX files.
Workaround: If you're using the flip feature in the world view, please reset the rotation and apply the changes in the model view.
Components Documentation
This chapter in-depth describes all the different Component types available in IOLITE.
Last updated: 03.04.2023
Table of Contents
- Voxel Shape
- Camera
- Character Controller
- Procedural Animation
- Script
- Post Effect Volume
- Trigger
- Interactable
Voxel Shape
TODO
Camera
TODO
Character Controller
TODO
Procedural Animation
TODO
Script
TODO
Post Effect Volume
TODO
Trigger
TODO
Interactable
TODO
Lua API 0.1.0 Documentation
Overview
This section offers a quick overview of all the functions and types made available via the Lua scripting interface. Use this section to quickly localize something and to jump to the detailed description in the next sections.
Lua Scripting Interface Header
To ease writing Lua code, you can also download the scripting interface as a LUA file. Autocompletion should work right out of the box with a lot of different IDEs, like, e.g., Visual Studio Code in combination with the widely spread Lua extension. Just download and place the iolite_api.lua
file right next to your scripts.
The file itself is automatically generated and always reflects the latest state of the API visible on this page here.
iolite_api.lua
The file itself looks like this:
---IOLITE Scripting API (https://iolite-engine.com)
[email protected] (c) 2023 Missing Deadlines (Benjamin Wrensch)
---Vector type with two components.
[email protected] Vec2
Vec2 = {
---The x component of this vector.
[email protected] number
x = nil,
---The y component of this vector.
[email protected] number
y = nil
}
---Initializes all components of the vector to the provided parameter.
[email protected] x Vec2|number
[email protected] Vec2 value
function Vec2(x)
end
---Initializes the x and y components to the provided values.
[email protected] x number
[email protected] y number
[email protected] Vec2 value
function Vec2(x, y)
end
---Vector type with three components.
[email protected] Vec3
Vec3 = {
---The x component of this vector.
[email protected] number
x = nil,
---The y component of this vector.
[email protected] number
y = nil,
---The z component of this vector.
[email protected] number
z = nil
}
---Initializes all components of the vector to the provided parameter.
[email protected] x Vec3|number
[email protected] Vec3 value
function Vec3(x)
end
---Initializes the x, y, and z components to the provided values.
[email protected] x number
[email protected] y number
[email protected] z number
[email protected] Vec3 value
function Vec3(x, y, z)
end
---Vector type with four components.
[email protected] Vec4
Vec4 = {
---The x component of this vector.
[email protected] number
x = nil,
---The y component of this vector.
[email protected] number
y = nil,
---The z component of this vector.
[email protected] number
z = nil,
---The w component of this vector.
[email protected] number
w = nil
}
---Initializes all components of the vector to the provided parameter.
[email protected] x Vec4|number
[email protected] Vec4 value
function Vec4(x)
end
---Initializes the x, y, z, and w components to the provided values.
[email protected] x number
[email protected] y number
[email protected] z number
[email protected] w number
[email protected] Vec4 value
function Vec4(x, y, z, w)
end
---A quaternion with four components.
[email protected] Quat
Quat = {
---The x component of this quaternion.
[email protected] number
w = nil,
---The y component of this quaternion.
[email protected] number
x = nil,
---The z component of this quaternion.
[email protected] number
y = nil,
---The w component of this quaternion.
[email protected] number
z = nil
}
---Initializes all components of the quaternion to the provided parameter.
[email protected] quat Quat
[email protected] Quat value
function Quat(quat)
end
---Initializes the w, x, y, and z components to the provided values.
[email protected] w number
---[email protected] x number
[email protected] y number
[email protected] z number
[email protected] Quat value
function Quat(w, x, y, z)
end
---A reference to entities, components or resources. Refs are only returned by functions and can then be used to, e.g., interact with a created node.
[email protected] Ref
Ref = {
}
---A name can be initialized from a string and supports fast comparison with other names (using integer instead of string comparisons internally).
[email protected] Name
Name = {
}
---Initializes an invalid/empty name.
[email protected] Name value
function Name()
end
---Initializes a new name from a string.
[email protected] name string
[email protected] Name value
function Name(name)
end
---Initializes this name from another name.
[email protected] name Name
[email protected] Name value
function Name(name)
end
---Handle used to reference particle emitters.
[email protected] EmitterHandle
EmitterHandle = {
}
Math = {}
---Returns x raised to the power y.
[email protected] x number The base.
[email protected] y number The exponent.
[email protected] number value The result of x raised to the power y.
function Math.pow(x, y)
end
---Returns the square root of x.
[email protected] x number The input value.
[email protected] number value The square root of x.
function Math.sqrt(x)
end
---Returns e (Euler's number) raised to the power x.
[email protected] x number The exponent.
[email protected] number value The result of e raised to the power x.
function Math.exp(x)
end
---Calculates the absolute value of x.
[email protected] x number The input value.
[email protected] number value The absolute value of x.
function Math.abs(x)
end
---Clamps x to the provided minimum and maximum.
[email protected] x number The value to clamp.
[email protected] min number The minimum.
[email protected] max number The maximum.
[email protected] number value The result of x clamped to [min, max].
function Math.clamp(x, min, max)
end
---Computes the minimum value of x and y.
[email protected] x number First input value.
[email protected] y number Second input value.
[email protected] number value The minimum of x and y.
function Math.min(x, y)
end
---Computes the maximum value of x and y.
[email protected] x number First input value.
[email protected] y number Second input value.
[email protected] number value The maximum of x and y.
function Math.max(x, y)
end
Math = {}
---Converts the provided angle in degrees to radians.
[email protected] x number Angle in degrees.
[email protected] number value Angle in radians.
function Math.radians(x)
end
---Converts the provided angle in radians to degrees.
[email protected] x number Angle in radians.
[email protected] number value Angle in degrees.
function Math.degrees(x)
end
---Calculates the sine of the provided angle.
[email protected] x number Angle in radians.
[email protected] number value The sine of the angle.
function Math.sin(x)
end
---Calculates the arc sine of the provided value.
[email protected] x number Value in [-1, 1].
[email protected] number value The arc sine in radians.
function Math.asin(x)
end
---Calculates the cosine of the provided angle.
[email protected] x number Angle in radians.
[email protected] number value The cosine of the angle.
function Math.cos(x)
end
---Calculates the arc cosine of the provided value.
[email protected] x number Value in [-1, 1].
[email protected] number value The arc cosine in radians.
function Math.acos(x)
end
---Calculates the tangent of the provided angle.
[email protected] x number Angle in radians.
[email protected] number value The tangent of the angle.
function Math.tan(x)
end
---Calculates the arc tangent of the provided angle.
[email protected] x number Input value.
[email protected] number value The arc tangent in radians.
function Math.atan(x)
end
---Calculates the arc tangent of y/x in radians.
[email protected] y number Proportion of the y-coordinate.
[email protected] x number Proportion of the x-coordinate.
[email protected] number value The arc tangent of y/x in radians.
function Math.atan2(y, x)
end
Math = {}
---Linearly interpolates between the provided input values.
[email protected] x number|Vec2|Vec3|Vec4 Start of the interpolation range.
[email protected] y number|Vec2|Vec3|Vec4 End of the interpolation range.
[email protected] a number Fraction used to interpolate between x and y.
[email protected] any value The interpolated result.
function Math.lerp(x, y, a)
end
---Spherically interpolates between the provided input values. Useful for interpolating between quaternion-based orientations at constant speed.
[email protected] x Quat First interpolant.
[email protected] y Quat Second interpolant.
[email protected] a number Fraction used to interpolate between x and y.
[email protected] Quat value The interpolated result.
function Math.slerp(x, y, a)
end
Math = {}
---Retrieves the component of the vector for the given index.
[email protected] vec Vec2|Vec3|Vec4 The vector to retrieve the component from.
[email protected] idx number The index of the component to retrieve.
[email protected] number value The value of the vector's component for the given index.
function Math.vec_get_component(vec, idx)
end
---Multiplies the provided vectors.
[email protected] x Vec2|Vec3|Vec4 The first vector.
[email protected] y Vec2|Vec3|Vec4] The second vector.
[email protected] any value The product of the operation.
function Math.vec_mul(x, y)
end
---Scales the provided vector by the given scalar value.
[email protected] s number The scalar value the vector is scaled by.
[email protected] vec Vec2|Vec3|Vec4 The vector to scale.
[email protected] any value The scaled vector.
function Math.vec_scale(s, vec)
end
---Divides the first vector by the second vector.
[email protected] x Vec2|Vec3|Vec4 The first vector.
[email protected] y Vec2|Vec3|Vec4 The second vector.
[email protected] any value The quotient of the operation.
function Math.vec_div(x, y)
end
---Adds the second vector to the first vector.
[email protected] x Vec2|Vec3|Vec4 The first vector.
[email protected] y Vec2|Vec3|Vec4 The second vector.
[email protected] any value The summand of the operation.
function Math.vec_add(x, y)
end
---Subtracts the second vector from the first vector.
[email protected] x Vec2|Vec3|Vec4 The first vector.
[email protected] y Vec2|Vec3|Vec4 The second vector.
[email protected] any value The difference of the operation.
function Math.vec_sub(x, y)
end
---Returns the length of the provided vector.
[email protected] vec Vec2|Vec3|Vec4 The vector used for calculating the length.
[email protected] any value The length of the provided vector.
function Math.vec_length(vec)
end
---Returns the squared length of the provided vector. More efficient when only comparing lengths.
[email protected] vec Vec2|Vec3|Vec4 The vector used for calculating the length.
[email protected] any value The squared length of the provided vector.
function Math.vec_length2(vec)
end
---Returns the distance between the two provided points in space.
[email protected] x Vec2|Vec3|Vec4 The first position in space.
[email protected] y Vec2|Vec3|Vec4 The second position in space.
[email protected] any value The distance between the two provided points.
function Math.vec_distance(x, y)
end
---Returns the squared distance between the two provided points in space. More efficient when only comparing distances.
[email protected] x Vec2|Vec3|Vec4 The first position in space.
[email protected] y Vec2|Vec3|Vec4 The second position in space.
[email protected] any value The squared distance between the two provided points.
function Math.vec_distance2(x, y)
end
---Normalizes the provided vector.
[email protected] x Vec2|Vec3|Vec4 The vector to normalize.
[email protected] any value The normalized vector.
function Math.vec_normalize(x)
end
---Calculates the dot product of the provided vectors.
[email protected] x Vec2|Vec3|Vec4 The first vector.
[email protected] y Vec2|Vec3|Vec4 The second vector.
[email protected] number value The dot product of both vectors.
function Math.vec_dot(x, y)
end
---Calculates the cross product of the provided vectors.
[email protected] x Vec3 The first vector.
[email protected] y Vec3 The second vector.
[email protected] Vec3 value The cross product of both vectors.
function Math.vec_cross(x, y)
end
Math = {}
---Multiplies the provided quaternions.
[email protected] x Quat The first quaternion.
[email protected] y Quat The second quaternion.
[email protected] Quat value The product of both quaternions.
function Math.quat_mul(x, y)
end
---Rotates the provided three-component vector using the given quaternion.
[email protected] quat Quat The quaternion used for the rotation.
[email protected] vec Vec3 The vector to rotate.
[email protected] Vec3 value The rotated three-component vector.
function Math.quat_rotate(quat, vec)
end
---Computes the inverse of the provided quaternion.
[email protected] quat Quat The quaternion to invert.
[email protected] Quat value The inverse of the provided quaternion.
function Math.quat_inverse(quat)
end
---Normalizes the provided quaternion.
[email protected] quat Quat The quaternion to normalize.
[email protected] Quat value The normalized quaternion.
function Math.quat_normalize(quat)
end
---Generates a look at quaternion using the provided direction and up vector.
[email protected] dir Vec3 The direction to look in.
[email protected] up Vec3 The up vector.
[email protected] Quat value The look at quaternion for the provided direction and up vector.
function Math.quat_look_at(dir, up)
end
---Generates a quaternion from the provided axis rotation.
[email protected] angle number The angle of the rotation in radians.
[email protected] axis Vec3 The axis to rotate around.
[email protected] Quat value The quaternion for the provided axis rotation.
function Math.quat_from_angle_axis(angle, axis)
end
---Derives the Euler angles from the provided quaternion.
[email protected] quat Quat The quaternion to derive the Euler angles from.
[email protected] Vec3 value The Euler angles [pitch, yaw, roll] derived from the quaternion.
function Math.quat_to_euler_angles(quat)
end
---Derives a quaternion from the provided Euler angles.
[email protected] euler Vec3 The Euler angles [pitch, yaw, roll] to derive the quaternion from.
[email protected] Quat value The quaternion derived from the Euler angles.
function Math.quat_from_euler_angles(euler)
end
---Computes a quaternion describing a rotation from vector x to vector y.
[email protected] x Vec3 The first vector.
[email protected] y Vec3 The second vector.
[email protected] Quat value The quaternion describing a rotation from x to y.
function Math.quat_rotation(x, y)
end
Random = {}
---Generates a random unsigned integer.
[email protected] number value Random unsigned integer value.
function Random.rand_uint()
end
---Generates a random float in [0.0, 1.0].
[email protected] number value Random floating point value.
function Random.rand_float()
end
---Generates a random float in [min, max].
[email protected] min number The smallest random float to generate.
[email protected] max number The largest random float to generate.
[email protected] number value Random floating point value in [min, max].
function Random.rand_float_min_max(min, max)
end
Input = {}
---Gets the state of the given key.
[email protected] key number The key to retrieve the state from.
[email protected] player_id number The player id to retrieve the state from.
[email protected] number value The current state of the given key.
function Input.get_key_state(key, player_id)
end
---Gets the state of the given axis.
[email protected] axis number The axis to retrieve the state from.
[email protected] player_id number The player id to retrieve the state from.
[email protected] number value The current state of the given axis mapped to [-1, 1].
function Input.get_axis_state(axis, player_id)
end
---Gets the position of the mouse.
[email protected] Vec2 value The position of the mouse in pixels.
function Input.get_mouse_pos()
end
---Gets the position of the mouse mapped to viewport coordinates.
[email protected] Vec2 value The position of the mouse relative to the viewport (mapped to [0, 1]).
function Input.get_mouse_pos_viewport()
end
---Gets the delta position of the mouse (calculated as current_mouse_pos - previous_mouse_pos).
[email protected] Vec2 value The position delta in pixels.
function Input.get_mouse_pos_relative()
end
---Requests the hardware mouse cursor to be shown. Has to be called every frame to keep the mouse cursor visible.
function Input.request_mouse_cursor()
end
Log = {}
---Logs the given string as information.
[email protected] message string The message to log.
function Log.log_info(message)
end
---Logs the given string as a warning.
[email protected] message string The message to log.
function Log.log_warning(message)
end
---Logs the given string as an error.
[email protected] message string The message to log.
function Log.log_error(message)
end
Settings = {}
---Creates or sets the setting with the given name to the provided value.
[email protected] name string The name of the setting.
[email protected] value number|boolean The value to set.
function Settings.register_or_update_setting(name, value)
end
---Gets the setting with the given name (as a bool).
[email protected] name string The name of the setting to retrieve from.
[email protected] boolean value The value of the setting.
function Settings.find_setting_bool(name)
end
---Gets the setting with the given name (as a float).
[email protected] name string The name of the setting to retrieve from.
[email protected] boolean value The value of the setting.
function Settings.find_setting_float(name)
end
---Gets the setting with the given name (as an unsigned integer).
[email protected] name string The name of the setting to retrieve from.
[email protected] number value The value of the setting.
function Settings.find_setting_uint(name)
end
Ref = {}
---Returns true if the provided ref is valid.
[email protected] ref Ref The ref to check.
[email protected] boolean value True if the provided ref is valid.
function Ref.is_valid(ref)
end
---Gets the id of the provided ref.
[email protected] ref Ref The ref to retrieve from.
[email protected] number value The id of the provided ref.
function Ref.get_id(ref)
end
---Gets the type id of the provided ref.
[email protected] ref Ref The ref to retrieve from.
[email protected] number value The type id of the provided ref.
function Ref.get_type_id(ref)
end
Name = {}
---Returns true if the given name is valid (not empty).
[email protected] name string The name to check.
[email protected] Ref value True if the given names are valid (and not empty).
function Name.is_valid(name)
end
---Returns whether the names are equal - or not.
[email protected] a Name The first name to compare.
[email protected] b Ref The second name to compare.
[email protected] boolean value True if both names are equal.
function Name.equal_to(a, b)
end
Physics = {}
---Performs a sphere sweep test from the given position into the provided direction. Great for doing intersection tests for fast moving objects, like, e.g., projectiles.
[email protected] p Vec3 The position to start the sweep at.
[email protected] r number The radius of the sphere to sweep with.
[email protected] dir Vec3 The direction to sweep in.
[email protected] dist number The distance to sweep.
[email protected] boolean hit Whether the sweep test hit something - or not.
[email protected] Vec3 pos The position of the hit.
[email protected] Vec3 normal The normal of the hit.
[email protected] Ref ref The ref referencing the component responsible for the hit.
function Physics.sweep_sphere(p, r, dir, dist)
end
---Performs a raycast from the given position into the provided direction.
[email protected] origin Vec3 The starting position (origin) of the ray.
[email protected] dir Vec3 The direction of the ray.
[email protected] dist number The maximum distance the ray can travel.
[email protected] boolean hit Whether the raycast hit something - or not.
[email protected] Vec3 pos The position of the hit.
[email protected] Vec3 normal The normal of the hit.
[email protected] Ref ref The ref referencing the component responsible for the hit.
function Physics.raycast(origin, dir, dist)
end
World = {}
---Returns the root node of the current world.
[email protected] Ref value The root node of the current world.
function World.get_root_node()
end
---Loads the world with the given name replacing the current world.
[email protected] name string The name of the world to load.
function World.load_world(name)
end
---Spawns the prefab with the given name.
[email protected] name string The name of the prefab to spawn.
[email protected] Ref value The root node of the loaded prefab.
function World.spawn_prefab(name)
end
---Helper function to calculate a ray starting at the current camera's position towards the projected position of the mouse cursor.
[email protected] boolean origin The origin of the ray (current position of the camera).
[email protected] Vec3 pos The direction of the ray (towards the current position of the mouse).
function World.calc_mouse_ray()
end
---Applies radius damage at the given position for explosion type effects.
[email protected] pos Vec3 The world space position to apply the explosion at.
[email protected] radius number The radius of the explosion.
[email protected] shade_crater boolean Whether the crater of the explosion should be shaded.
function World.radius_damage(pos, radius, shade_crater)
end
ParticleSystem = {}
---Spawns the particle emitter with a certain particle effect at the given position for the provided time.
[email protected] effect_name string The name of the particle effect to use.
[email protected] position Vec3 The position to spawn the emitter at (in world space).
[email protected] lifetime_in_seconds number How long the emitter should live (in seconds).
[email protected] adjust_spawnrate boolean Whether the spawnrate should be adjusted to the lifetime.
[email protected] EmitterHandle value The handle of the emitter.
function ParticleSystem.spawn_particle_emitter(effect_name, position, lifetime_in_seconds, adjust_spawnrate)
end
---Updates the spawn rate of the provided particle emtiter.
[email protected] emitter_handle EmitterHandle The handle of the emitter to update.
[email protected] spawn_rate float The new spawn rate to set.
function ParticleSystem.set_spawn_rate(emitter_handle, spawn_rate)
end
DebugGeometry = {}
---Draws a line with the given color.
[email protected] pos0 Vec3 The starting position of the line.
[email protected] pos1 Vec3 The end position of the line.
[email protected] color Vec4 The color of the line.
[email protected] always_in_front boolean Keep in front of all other objects in the scene.
function DebugGeometry.draw_line(pos0, pos1, color, always_in_front)
end
---Draws a sphere with the given radius and color.
[email protected] center Vec3 The center of the sphere.
[email protected] radius number The radius of the sphere.
[email protected] color Vec4 The color of the sphere.
[email protected] always_in_front boolean Keep in front of all other objects in the scene.
function DebugGeometry.draw_sphere(center, radius, color, always_in_front)
end
Entity = {}
---Gets the type id for entities.
[email protected] number value The type id for entities.
function Entity.get_type_id()
end
---Returns whether the referenced entity is still alive - or not.
[email protected] entity Ref The ref of the entity.
[email protected] boolean value True if the entity referenced is alive.
function Entity.is_alive(entity)
end
---Retrieves the name of the given entity.
[email protected] entity Ref The ref of the entity.
[email protected] string value The name of the entity.
function Entity.get_name(entity)
end
---Returns the first entity found in the world with the given name.
[email protected] name string The name of the entity to retrieve.
[email protected] Ref value The entity with the given name. Returns an invalid ref if not found.
function Entity.find_first_entity_with_name(name)
end
---Returns an array with all entities matching the given name.
[email protected] name string The name of the entities to retrieve.
[email protected] table value List of entities with the given name.
function Entity.find_entities_with_name(name)
end
Node = {}
---Creates a new node component and entity and attaches it to the root node of the current world.
[email protected] name Ref The name of the node.
function Node.create(name)
end
---Creates a new node component and entity and attatches it to the provided node.
[email protected] parent_node Ref The node to attach the new node to.
[email protected] name Ref The name of the node.
function Node.create(parent_node, name)
end
---Destroys the given node and its whole hierarchy, including all components and entities attached to it and its children.
[email protected] node Ref The node to destroy.
function Node.destroy(node)
end
---Gets the local position of the given node component.
[email protected] node Ref The node component to retrieve from.
[email protected] Vec3 value The local position of the given node component.
function Node.get_position(node)
end
---Gets the world position of the given node component.
[email protected] node Ref The node component to retrieve from.
[email protected] Vec3 value The world position of the given node component.
function Node.get_world_position(node)
end
---Gets the orientation of the given node component.
[email protected] node Ref The node component to retrieve from.
[email protected] Quat value The orientation of the given node component.
function Node.get_orientation(node)
end
---Gets the world orientation of the given node component.
[email protected] node Ref The node component to retrieve from.
[email protected] Quat value The world orientation of the given node component.
function Node.get_world_orientation(node)
end
---Sets the local position of the given node component.
[email protected] node Ref The node component to modify.
[email protected] position Vec3 The local position to set.
function Node.set_position(node, position)
end
---Sets the world position of the given node component by reversing the world transform of the parent node. Can be used to move the node to a fixed world position, regardless of its hierarchy.
[email protected] node Ref The node component to modify.
[email protected] position Vec3 The world position to set.
function Node.set_world_position(node, position)
end
---Sets the local orientation of the given node component.
[email protected] node Ref The node component to modify.
[email protected] position Quat The local orientation to set.
function Node.set_orientation(node, position)
end
---Sets the world orientation of the given node component by reversing the world transform of the parent node. Can be used to set the node to a fixed world orientation, regardless of its hierarchy.
[email protected] node Ref The node component to modify.
[email protected] orientation Quat The world orientation to set.
function Node.set_world_orientation(node, orientation)
end
---Sets the local size of the given node component.
[email protected] node Ref The node component to modify.
[email protected] size Vec3 The local size to set.
function Node.set_size(node, size)
end
---Updates the world transforms of the given node and all its child nodes. Has to be called to make any changes to the node visible.
[email protected] node Ref The root node component to update.
function Node.update_transforms(node)
end
Tag = {}
---Gets the type id for the given component.
[email protected] number value The type id for node components.
function Tag.get_type_id()
end
---Returns whether the referenced component is alive - or not.
[email protected] comp Ref The ref of the node component.
[email protected] boolean value True if the node component referenced is alive.
function Tag.is_alive(comp)
end
---Returns the component's entity.
[email protected] comp Ref The component to retrieve from.
[email protected] Ref value The entity this node component is attached to.
function Tag.get_entity(comp)
end
---Gets the component of the provided entity.
[email protected] comp Ref The Ref of the entity.
[email protected] Ref value The ref of the component of the provided entity. Returns an invalid ref if none is found.
function Tag.get_component_for_entity(comp)
end
---Returns an array of all available entities with matching tags.
[email protected] tag string The tag to match.
[email protected] table value List of entities with matching tag components.
function Tag.find_entities_with_tag(tag)
end
CharacterController = {}
---Gets the type id for the given component.
[email protected] number value The type id for node components.
function CharacterController.get_type_id()
end
---Returns whether the referenced component is alive - or not.
[email protected] comp Ref The ref of the node component.
[email protected] boolean value True if the node component referenced is alive.
function CharacterController.is_alive(comp)
end
---Returns the component's entity.
[email protected] comp Ref The component to retrieve from.
[email protected] Ref value The entity this node component is attached to.
function CharacterController.get_entity(comp)
end
---Gets the component of the provided entity.
[email protected] comp Ref The Ref of the entity.
[email protected] Ref value The ref of the component of the provided entity. Returns an invalid ref if none is found.
function CharacterController.get_component_for_entity(comp)
end
---Moves the character controller by the provided vector.
[email protected] cct Vec3 The character controller to move.
[email protected] move Vec3 The move vector.
function CharacterController.move(cct, move)
end
General
General math related functions.
Functions
pow(x, y) | Returns x raised to the power y. |
sqrt(x) | Returns the square root of x. |
exp(x) | Returns e (Euler's number) raised to the power x. |
abs(x) | Calculates the absolute value of x. |
clamp(x, min, max) | Clamps x to the provided minimum and maximum. |
min(x, y) | Computes the minimum value of x and y. |
max(x, y) | Computes the maximum value of x and y. |
Trigonometry
Trigonometry related functions and types.
Functions
radians(x) | Converts the provided angle in degrees to radians. |
degrees(x) | Converts the provided angle in radians to degrees. |
sin(x) | Calculates the sine of the provided angle. |
asin(x) | Calculates the arc sine of the provided value. |
cos(x) | Calculates the cosine of the provided angle. |
acos(x) | Calculates the arc cosine of the provided value. |
tan(x) | Calculates the tangent of the provided angle. |
atan(x) | Calculates the arc tangent of the provided angle. |
atan2(y, x) | Calculates the arc tangent of y/x in radians. |
Interpolation
Functions enabling interpolation between different data types.
Functions
lerp(x, y, a) | Linearly interpolates between the provided input values. |
slerp(x, y, a) | Spherically interpolates between the provided input values. Useful for interpolating between quaternion-based orientations at constant speed. |
Vector Math
Vector math related functions.
Functions
vec_get_component(vec, idx) | Retrieves the component of the vector for the given index. |
vec_mul(x, y) | Multiplies the provided vectors. |
vec_scale(s, vec) | Scales the provided vector by the given scalar value. |
vec_div(x, y) | Divides the first vector by the second vector. |
vec_add(x, y) | Adds the second vector to the first vector. |
vec_sub(x, y) | Subtracts the second vector from the first vector. |
vec_length(vec) | Returns the length of the provided vector. |
vec_length2(vec) | Returns the squared length of the provided vector. More efficient when only comparing lengths. |
vec_distance(x, y) | Returns the distance between the two provided points in space. |
vec_distance2(x, y) | Returns the squared distance between the two provided points in space. More efficient when only comparing distances. |
vec_normalize(x) | Normalizes the provided vector. |
vec_dot(x, y) | Calculates the dot product of the provided vectors. |
vec_cross(x, y) | Calculates the cross product of the provided vectors. |
Types
Vec2 | Vector type with two components. |
Vec3 | Vector type with three components. |
Vec4 | Vector type with four components. |
Quaternion Math
Quaternion math related functions and types.
Functions
quat_mul(x, y) | Multiplies the provided quaternions. |
quat_rotate(quat, vec) | Rotates the provided three-component vector using the given quaternion. |
quat_inverse(quat) | Computes the inverse of the provided quaternion. |
quat_normalize(quat) | Normalizes the provided quaternion. |
quat_look_at(dir, up) | Generates a look at quaternion using the provided direction and up vector. |
quat_from_angle_axis(angle, axis) | Generates a quaternion from the provided axis rotation. |
quat_to_euler_angles(quat) | Derives the Euler angles from the provided quaternion. |
quat_from_euler_angles(euler) | Derives a quaternion from the provided Euler angles. |
quat_rotation(x, y) | Computes a quaternion describing a rotation from vector x to vector y. |
Types
Quat | A quaternion with four components. |
Random
Functions to generate random numbers.
Functions
rand_uint() | Generates a random unsigned integer. |
rand_float() | Generates a random float in [0.0, 1.0]. |
rand_float_min_max(min, max) | Generates a random float in [min, max]. |
Input
Functions to interact with the input system.
Functions
get_key_state(key, player_id) | Gets the state of the given key. |
get_axis_state(axis, player_id) | Gets the state of the given axis. |
get_mouse_pos() | Gets the position of the mouse. |
get_mouse_pos_viewport() | Gets the position of the mouse mapped to viewport coordinates. |
get_mouse_pos_relative() | Gets the delta position of the mouse (calculated as current_mouse_pos - previous_mouse_pos). |
request_mouse_cursor() | Requests the hardware mouse cursor to be shown. Has to be called every frame to keep the mouse cursor visible. |
Logging
Functions necessary to interact with the logging subsystem.
Functions
log_info(message) | Logs the given string as information. |
log_warning(message) | Logs the given string as a warning. |
log_error(message) | Logs the given string as an error. |
Settings
Functions provided to modify and retrieve settings.
Functions
register_or_update_setting(name, value) | Creates or sets the setting with the given name to the provided value. |
find_setting_bool(name) | Gets the setting with the given name (as a bool). |
find_setting_float(name) | Gets the setting with the given name (as a float). |
find_setting_uint(name) | Gets the setting with the given name (as an unsigned integer). |
Refs
Functions provided to work with refs. Refs are used to reference components, resources and entities.
Functions
is_valid(ref) | Returns true if the provided ref is valid. |
get_id(ref) | Gets the id of the provided ref. |
get_type_id(ref) | Gets the type id of the provided ref. |
Types
Ref | A reference to entities, components or resources. Refs are only returned by functions and can then be used to, e.g., interact with a created node. |
Names
Functions and types provided to interact with names.
Functions
is_valid(name) | Returns true if the given name is valid (not empty). |
equal_to(a, b) | Returns whether the names are equal - or not. |
Types
Name | A name can be initialized from a string and supports fast comparison with other names (using integer instead of string comparisons internally). |
Physics
Functions provided to interact with the physics system.
Functions
sweep_sphere(p, r, dir, dist) | Performs a sphere sweep test from the given position into the provided direction. Great for doing intersection tests for fast moving objects, like, e.g., projectiles. |
raycast(origin, dir, dist) | Performs a raycast from the given position into the provided direction. |
World
Functions provided to interact with the current world on a global level.
Functions
get_root_node() | Returns the root node of the current world. |
load_world(name) | Loads the world with the given name replacing the current world. |
spawn_prefab(name) | Spawns the prefab with the given name. |
calc_mouse_ray() | Helper function to calculate a ray starting at the current camera's position towards the projected position of the mouse cursor. |
radius_damage(pos, radius, shade_crater) | Applies radius damage at the given position for explosion type effects. |
Particle System
Functions to interact with the low-level particle system.
Functions
spawn_particle_emitter(effect_name, position, lifetime_in_seconds, adjust_spawnrate) | Spawns the particle emitter with a certain particle effect at the given position for the provided time. |
set_spawn_rate(emitter_handle, spawn_rate) | Updates the spawn rate of the provided particle emtiter. |
Types
EmitterHandle | Handle used to reference particle emitters. |
Debug Geometry
Functions to draw debug geometry. Have to be called every frame.
Functions
draw_line(pos0, pos1, color, always_in_front) | Draws a line with the given color. |
draw_sphere(center, radius, color, always_in_front) | Draws a sphere with the given radius and color. |
Entities
Functions provided to interact with entities.
Functions
get_type_id() | Gets the type id for entities. |
is_alive(entity) | Returns whether the referenced entity is still alive - or not. |
get_name(entity) | Retrieves the name of the given entity. |
find_first_entity_with_name(name) | Returns the first entity found in the world with the given name. |
find_entities_with_name(name) | Returns an array with all entities matching the given name. |
Node Components
Functions provided to interact with node components.
Functions
create(name) | Creates a new node component and entity and attaches it to the root node of the current world. |
create(parent_node, name) | Creates a new node component and entity and attatches it to the provided node. |
destroy(node) | Destroys the given node and its whole hierarchy, including all components and entities attached to it and its children. |
get_position(node) | Gets the local position of the given node component. |
get_world_position(node) | Gets the world position of the given node component. |
get_orientation(node) | Gets the orientation of the given node component. |
get_world_orientation(node) | Gets the world orientation of the given node component. |
set_position(node, position) | Sets the local position of the given node component. |
set_world_position(node, position) | Sets the world position of the given node component by reversing the world transform of the parent node. Can be used to move the node to a fixed world position, regardless of its hierarchy. |
set_orientation(node, position) | Sets the local orientation of the given node component. |
set_world_orientation(node, orientation) | Sets the world orientation of the given node component by reversing the world transform of the parent node. Can be used to set the node to a fixed world orientation, regardless of its hierarchy. |
set_size(node, size) | Sets the local size of the given node component. |
update_transforms(node) | Updates the world transforms of the given node and all its child nodes. Has to be called to make any changes to the node visible. |
Tag Components
Functions provided to interact with tag components.
Functions
get_type_id() | Gets the type id for the given component. |
is_alive(comp) | Returns whether the referenced component is alive - or not. |
get_entity(comp) | Returns the component's entity. |
get_component_for_entity(comp) | Gets the component of the provided entity. |
find_entities_with_tag(tag) | Returns an array of all available entities with matching tags. |
Character Controller Components
Functions provided to interact with character controller components.
Functions
get_type_id() | Gets the type id for the given component. |
is_alive(comp) | Returns whether the referenced component is alive - or not. |
get_entity(comp) | Returns the component's entity. |
get_component_for_entity(comp) | Gets the component of the provided entity. |
move(cct, move) | Moves the character controller by the provided vector. |
Functions
This section lists the detailed description of all functions made available via the Lua scripting interface. To quickly find and jump to a function, please use the overview section above.
General
pow
local value = Math.pow(x, y)
Arguments
x [number]
y [number]
Return Value
value [number]
sqrt
local value = Math.sqrt(x)
Arguments
x [number]
Return Value
value [number]
exp
local value = Math.exp(x)
Arguments
x [number]
Return Value
value [number]
abs
local value = Math.abs(x)
Arguments
x [number]
Return Value
value [number]
clamp
local value = Math.clamp(x, min, max)
Arguments
x [number]
min [number]
max [number]
Return Value
value [number]
min
local value = Math.min(x, y)
Arguments
x [number]
y [number]
Return Value
value [number]
max
local value = Math.max(x, y)
Arguments
x [number]
y [number]
Return Value
value [number]
Trigonometry
radians
local value = Math.radians(x)
Arguments
x [number]
Return Value
value [number]
degrees
local value = Math.degrees(x)
Arguments
x [number]
Return Value
value [number]
sin
local value = Math.sin(x)
Arguments
x [number]
Return Value
value [number]
asin
local value = Math.asin(x)
Arguments
x [number]
Return Value
value [number]
cos
local value = Math.cos(x)
Arguments
x [number]
Return Value
value [number]
acos
local value = Math.acos(x)
Arguments
x [number]
Return Value
value [number]
tan
local value = Math.tan(x)
Arguments
x [number]
Return Value
value [number]
atan
local value = Math.atan(x)
Arguments
x [number]
Return Value
value [number]
atan2
local value = Math.atan2(y, x)
Arguments
y [number]
x [number]
Return Value
value [number]
Interpolation
lerp
local value = Math.lerp(x, y, a)
Arguments
a [number]
Return Value
slerp
local value = Math.slerp(x, y, a)
Arguments
x [Quat]
y [Quat]
a [number]
Return Value
value [Quat]
Vector Math
vec_get_component
local value = Math.vec_get_component(vec, idx)
Arguments
idx [number]
Return Value
value [number]
vec_mul
local value = Math.vec_mul(x, y)
Arguments
Return Value
vec_scale
local value = Math.vec_scale(s, vec)
Arguments
s [number]
Return Value
vec_div
local value = Math.vec_div(x, y)
Arguments
Return Value
vec_add
local value = Math.vec_add(x, y)
Arguments
Return Value
vec_sub
local value = Math.vec_sub(x, y)
Arguments
Return Value
vec_length
local value = Math.vec_length(vec)
Arguments
Return Value
vec_length2
local value = Math.vec_length2(vec)
Arguments
Return Value
vec_distance
local value = Math.vec_distance(x, y)
Arguments
Return Value
vec_distance2
local value = Math.vec_distance2(x, y)
Arguments
Return Value
vec_normalize
local value = Math.vec_normalize(x)
Arguments
Return Value
vec_dot
local value = Math.vec_dot(x, y)
Arguments
Return Value
value [number]
vec_cross
local value = Math.vec_cross(x, y)
Arguments
x [Vec3]
y [Vec3]
Return Value
value [Vec3]
Quaternion Math
quat_mul
local value = Math.quat_mul(x, y)
Arguments
x [Quat]
y [Quat]
Return Value
value [Quat]
quat_rotate
local value = Math.quat_rotate(quat, vec)
Arguments
quat [Quat]
vec [Vec3]
Return Value
value [Vec3]
quat_inverse
local value = Math.quat_inverse(quat)
Arguments
quat [Quat]
Return Value
value [Quat]
quat_normalize
local value = Math.quat_normalize(quat)
Arguments
quat [Quat]
Return Value
value [Quat]
quat_look_at
local value = Math.quat_look_at(dir, up)
Arguments
dir [Vec3]
up [Vec3]
Return Value
value [Quat]
quat_from_angle_axis
local value = Math.quat_from_angle_axis(angle, axis)
Arguments
angle [number]
axis [Vec3]
Return Value
value [Quat]
quat_to_euler_angles
local value = Math.quat_to_euler_angles(quat)
Arguments
quat [Quat]
Return Value
value [Vec3]
quat_from_euler_angles
local value = Math.quat_from_euler_angles(euler)
Arguments
euler [Vec3]
Return Value
value [Quat]
quat_rotation
local value = Math.quat_rotation(x, y)
Arguments
x [Vec3]
y [Vec3]
Return Value
value [Quat]
Random
rand_uint
local value = Random.rand_uint()
Arguments
noneReturn Value
value [number]
rand_float
local value = Random.rand_float()
Arguments
noneReturn Value
value [number]
rand_float_min_max
local value = Random.rand_float_min_max(min, max)
Arguments
min [number]
max [number]
Return Value
value [number]
Input
get_key_state
local value = Input.get_key_state(key, player_id)
Arguments
key [number]
player_id [number]
Return Value
value [number]
get_axis_state
local value = Input.get_axis_state(axis, player_id)
Arguments
axis [number]
player_id [number]
Return Value
value [number]
get_mouse_pos
local value = Input.get_mouse_pos()
Arguments
noneReturn Value
value [Vec2]
get_mouse_pos_viewport
local value = Input.get_mouse_pos_viewport()
Arguments
noneReturn Value
value [Vec2]
get_mouse_pos_relative
local value = Input.get_mouse_pos_relative()
Arguments
noneReturn Value
value [Vec2]
request_mouse_cursor
Input.request_mouse_cursor()
Arguments
noneReturn Value
noneLogging
log_info
Log.log_info(message)
Arguments
message [string]
Return Value
nonelog_warning
Log.log_warning(message)
Arguments
message [string]
Return Value
nonelog_error
Log.log_error(message)
Arguments
message [string]
Return Value
noneSettings
register_or_update_setting
Settings.register_or_update_setting(name, value)
Arguments
name [string]
Return Value
nonefind_setting_bool
local value = Settings.find_setting_bool(name)
Arguments
name [string]
Return Value
value [boolean]
find_setting_float
local value = Settings.find_setting_float(name)
Arguments
name [string]
Return Value
value [boolean]
find_setting_uint
local value = Settings.find_setting_uint(name)
Arguments
name [string]
Return Value
value [number]
Refs
is_valid
local value = Ref.is_valid(ref)
Arguments
ref [Ref]
Return Value
value [boolean]
get_id
local value = Ref.get_id(ref)
Arguments
ref [Ref]
Return Value
value [number]
get_type_id
local value = Ref.get_type_id(ref)
Arguments
ref [Ref]
Return Value
value [number]
Names
is_valid
local value = Name.is_valid(name)
Arguments
name [string]
Return Value
value [Ref]
equal_to
local value = Name.equal_to(a, b)
Arguments
a [Name]
b [Ref]
Return Value
value [boolean]
Physics
sweep_sphere
local hit, pos, normal, ref = Physics.sweep_sphere(p, r, dir, dist)
Arguments
p [Vec3]
r [number]
dir [Vec3]
dist [number]
Return Value
hit [boolean]
pos [Vec3]
normal [Vec3]
ref [Ref]
raycast
local hit, pos, normal, ref = Physics.raycast(origin, dir, dist)
Arguments
origin [Vec3]
dir [Vec3]
dist [number]
Return Value
hit [boolean]
pos [Vec3]
normal [Vec3]
ref [Ref]
World
get_root_node
local value = World.get_root_node()
Arguments
noneReturn Value
value [Ref]
load_world
World.load_world(name)
Arguments
name [string]
Return Value
nonespawn_prefab
local value = World.spawn_prefab(name)
Arguments
name [string]
Return Value
value [Ref]
calc_mouse_ray
local origin, pos = World.calc_mouse_ray()
Arguments
noneReturn Value
origin [boolean]
pos [Vec3]
radius_damage
World.radius_damage(pos, radius, shade_crater)
Arguments
pos [Vec3]
radius [number]
shade_crater [boolean]
Return Value
noneParticle System
spawn_particle_emitter
local value = ParticleSystem.spawn_particle_emitter(effect_name, position, lifetime_in_seconds, adjust_spawnrate)
Arguments
effect_name [string]
position [Vec3]
lifetime_in_seconds [number]
adjust_spawnrate [boolean]
Return Value
value [EmitterHandle]
set_spawn_rate
ParticleSystem.set_spawn_rate(emitter_handle, spawn_rate)
Arguments
emitter_handle [EmitterHandle]
spawn_rate [float]
Return Value
noneDebug Geometry
draw_line
DebugGeometry.draw_line(pos0, pos1, color, always_in_front)
Arguments
pos0 [Vec3]
pos1 [Vec3]
color [Vec4]
always_in_front [boolean]
Return Value
nonedraw_sphere
DebugGeometry.draw_sphere(center, radius, color, always_in_front)
Arguments
center [Vec3]
radius [number]
color [Vec4]
always_in_front [boolean]
Return Value
noneEntities
get_type_id
local value = Entity.get_type_id()
Arguments
noneReturn Value
value [number]
is_alive
local value = Entity.is_alive(entity)
Arguments
entity [Ref]
Return Value
value [boolean]
get_name
local value = Entity.get_name(entity)
Arguments
entity [Ref]
Return Value
value [string]
find_first_entity_with_name
local value = Entity.find_first_entity_with_name(name)
Arguments
name [string]
Return Value
value [Ref]
find_entities_with_name
local value = Entity.find_entities_with_name(name)
Arguments
name [string]
Return Value
value [table]
Node Components
create
Node.create(name)
Arguments
name [Ref]
Return Value
nonecreate
Node.create(parent_node, name)
Arguments
parent_node [Ref]
name [Ref]
Return Value
nonedestroy
Node.destroy(node)
Arguments
node [Ref]
Return Value
noneget_position
local value = Node.get_position(node)
Arguments
node [Ref]
Return Value
value [Vec3]
get_world_position
local value = Node.get_world_position(node)
Arguments
node [Ref]
Return Value
value [Vec3]
get_orientation
local value = Node.get_orientation(node)
Arguments
node [Ref]
Return Value
value [Quat]
get_world_orientation
local value = Node.get_world_orientation(node)
Arguments
node [Ref]
Return Value
value [Quat]
set_position
Node.set_position(node, position)
Arguments
node [Ref]
position [Vec3]
Return Value
noneset_world_position
Node.set_world_position(node, position)
Arguments
node [Ref]
position [Vec3]
Return Value
noneset_orientation
Node.set_orientation(node, position)
Arguments
node [Ref]
position [Quat]
Return Value
noneset_world_orientation
Node.set_world_orientation(node, orientation)
Arguments
node [Ref]
orientation [Quat]
Return Value
noneset_size
Node.set_size(node, size)
Arguments
node [Ref]
size [Vec3]
Return Value
noneupdate_transforms
Node.update_transforms(node)
Arguments
node [Ref]
Return Value
noneTag Components
get_type_id
local value = Tag.get_type_id()
Arguments
noneReturn Value
value [number]
is_alive
local value = Tag.is_alive(comp)
Arguments
comp [Ref]
Return Value
value [boolean]
get_entity
local value = Tag.get_entity(comp)
Arguments
comp [Ref]
Return Value
value [Ref]
get_component_for_entity
local value = Tag.get_component_for_entity(comp)
Arguments
comp [Ref]
Return Value
value [Ref]
find_entities_with_tag
local value = Tag.find_entities_with_tag(tag)
Arguments
tag [string]
Return Value
value [table]
Character Controller Components
get_type_id
local value = CharacterController.get_type_id()
Arguments
noneReturn Value
value [number]
is_alive
local value = CharacterController.is_alive(comp)
Arguments
comp [Ref]
Return Value
value [boolean]
get_entity
local value = CharacterController.get_entity(comp)
Arguments
comp [Ref]
Return Value
value [Ref]
get_component_for_entity
local value = CharacterController.get_component_for_entity(comp)
Arguments
comp [Ref]
Return Value
value [Ref]
move
CharacterController.move(cct, move)
Arguments
cct [Vec3]
move [Vec3]
Return Value
noneTypes
This section lists the detailed description of all types made available via the Lua scripting interface. Class-like structures are almost exlusively PODs (plain old data) and do not, besides the constructor, expose member functions. To quickly find and jump to a type, please use the overview section above.
Vector Math
Vec2
--Example of Vec2's member variable layout as a Lua table
local value = {
x = nil,
y = nil
}
Constructors
Members
x [number]
y [number]
Vec3
--Example of Vec3's member variable layout as a Lua table
local value = {
x = nil,
y = nil,
z = nil
}
Constructors
Members
x [number]
y [number]
z [number]
Vec4
--Example of Vec4's member variable layout as a Lua table
local value = {
x = nil,
y = nil,
z = nil,
w = nil
}
Constructors
Members
x [number]
y [number]
z [number]
w [number]
Quaternion Math
Quat
--Example of Quat's member variable layout as a Lua table
local value = {
w = nil,
x = nil,
y = nil,
z = nil
}
Constructors
Quat(quat [Quat])
Members
w [number]
x [number]
y [number]
z [number]
Refs
Ref
Names
Name
Constructors
Name()
Name(name [string])
Name(name [Name])